Sayfadaki görseller
PDF
ePub

Beginning the course, the first week is devoted to a class-room consideration of definition of terms and the behavior of materials under tensile stress. In the laboratory period of the second week, tensile tests are made of two specimens both cut from the same wrought iron or mild steel bar, one being rough, one inch in diameter, and the other turned down to a smaller size (Fig. 1). The group of ten students gathers around the testing machine-there is room enough for all to note everything that takes place and each student is

No.21

No. 21

Retested Specimens
FIG. 1.

required to keep full records just as though he were making the test individually. This being the first test, the construction and operation of the testing machine is explained. The rough bar is tested first. It is marked off in the presence of the class, with punch marks an inch apart, and placed in the machine. As the test proceeds, attention is first directed to the detection of the yield point by noting the drop of the beam, then the breaking down action is watched as shown by the loosening of the mill scale, then interest centers in the rapid stretching of the bar, readily noted with a pair of dividers, and finally, in turn, the ultimate load, the

necking down action, and the breaking load are noted. The broken specimen is passed around, it is handled and examined. They note that it is warm. They see the form of fracture and compare it with that of specimens pictured in the text-book. The diameter of the broken section is measured, and, finally, the broken ends are placed together and the elongation in lengths of

[graphic][merged small][subsumed]

2, 3, 4, 5, 6, 7 and 8 inches is measured with a pair of dividers, always keeping the broken section as near the middle of the measured length as possible. The test of the other specimen is then run through rapidly, noting all the results the same as for the first. A neatly-written report of these tests with computed significant results, and a diagram (Fig. 2), showing the variation in percentage of elongation when based upon

different lengths, is required as a part of the next lesson; and the broken specimens find a place upon the class-room table where they remain within easy reach, to be appealed to most effectively in many a class-room discussion in the weeks to come. These simple tests, readily carried out within the limits of the hour, have kept the little group of students keen with interest, have thrown new light upon many points discussed in the text, have appealed to the eye, the ear, and the sense of touch as no amount of class-room discussion

[graphic][merged small][merged small]

could; and, finally, have added a little of that time element often necessary to the full comprehension of a new subject.

The third week finds the class considering the behavior of materials under compressive stress. Accordingly, the laboratory period is devoted to tests in compression of wrought iron and mild steel, as types of ductile materials and sandstone, sand-lime brick, and cast iron as types of brittle materials (Fig. 3). The wrought iron and mild steel specimens are cut from the same bars as the tensile specimens (Fig. 1) tested the

previous week, thus enabling a comparison of the yield points in tension and compression.

After this preliminary study of definitions, prin

[graphic][subsumed][merged small]

ciples and materials, the class is ready for the more specific consideration of each material by itself. It must not be forgotten in this connection that nearly all our computations regarding stresses in materials are based upon the principles of elasticity with stresses below the elastic limit. It is not sufficient, then, to consider only ultimate strengths. The elastic limit, and the more or less perfect elasticity of the material, as well as its behavior throughout the whole range of stress, should be made the subject of careful study. The student needs to be brought face to face with these principles and qualities, again and again, until they become a part of his unconscious possession, guiding his judgment, giving form to his expression.

Timber seems to offer many advantages as the material first to be considered. It is one of the most common materials of construction. The specimens are easily prepared and cheap. The deformations under stress are relatively great, and, therefore, readily measured. The strengths and elasticities vary in different directions with reference to the grain, thus requiring fuller investigation as well as clear ideas as to direction of stress. The strengths are subject to many variables, and yet, by controlling these variables, or by recognizing their presence, consistent and highly instructive results may be obtained.

Beginning the subject of timber, the first laboratory period is devoted to the examination of the minute. structure of wood as revealed by the microscope in transverse, radial and tangential sections of the common hardwoods and softwoods; this being the basis for explaining so many of its strength, grain and shrinkage

« ÖncekiDevam »