Kitabın içinden
3 sonuçtan 1-3 arası sonuçlar
Sayfa 125
... 1 M : = F # M FR , ME E Matn ( W ) ®k , where M is an arbitrary matrix in MatN (
W ) and F is a fixed element of Aut ( VOV ) . In the role of linear space W we
choose an associative algebra A over C freely generated by the unit element and
the ...
... 1 M : = F # M FR , ME E Matn ( W ) ®k , where M is an arbitrary matrix in MatN (
W ) and F is a fixed element of Aut ( VOV ) . In the role of linear space W we
choose an associative algebra A over C freely generated by the unit element and
the ...
Sayfa 127
Consider the linear span Pow ( R , F ) C Matn ( M ( R , F ) ) M ( z ( K ) , of the
scalar matrices Idv y , Ye Char ( R , F ) , and ... Precisely with respect to the
images PR ( x ( k - 1 ) ) E Idy Aut ( V® ( k - 1 ) ) , the operation Tr R ( 2 .. k )
possesses the ...
Consider the linear span Pow ( R , F ) C Matn ( M ( R , F ) ) M ( z ( K ) , of the
scalar matrices Idv y , Ye Char ( R , F ) , and ... Precisely with respect to the
images PR ( x ( k - 1 ) ) E Idy Aut ( V® ( k - 1 ) ) , the operation Tr R ( 2 .. k )
possesses the ...
Sayfa 287
Let me M , m = dmi ( mod Mn + 1 ) , d E K. Then the operator ra ( m ) ( mod Ğ ( Mn
+ 1 ) ) in Aut ( A / Mn + 1 ) ® is equal to 1 ... from Lemma 1 and the fact that the
adjoint action of a Chevalley group is augmentative ( see ( GS2 , Theorem 3.C ] )
.
Let me M , m = dmi ( mod Mn + 1 ) , d E K. Then the operator ra ( m ) ( mod Ğ ( Mn
+ 1 ) ) in Aut ( A / Mn + 1 ) ® is equal to 1 ... from Lemma 1 and the fact that the
adjoint action of a Chevalley group is augmentative ( see ( GS2 , Theorem 3.C ] )
.
Kullanıcılar ne diyor? - Eleştiri yazın
Her zamanki yerlerde hiçbir eleştiri bulamadık.
İçindekiler
Данилов Л И Об отсутствии собственных значений в спектре | 47 |
A Antipov and A I Generalov The Yoneda algebras of symmetric special | 377 |
A G Bytsko On higher spin U sl2invariant Rmatrices | 393 |
Telif Hakkı | |
7 diğer bölüm gösterilmiyor
Diğer baskılar - Tümünü görüntüle
Sık kullanılan terimler ve kelime öbekleri
algebraic analytic apply approximation arbitrary argument assume bounded called closed coefficients coincides complete condition connected Consequently consider constant construction contains continuous corresponding covering curves defined definition deformation denote depend determined dimension discrete edges element English equation equivalent estimate exists fact finite fixed formula function given Goursat problem graph identity implies inequality integral introduce invariant lattice Lemma limit linear locally Math Mathematical matrix means measure metric Moreover Note obtain operator parameters particular periodic Phys points polynomial positive potential problem Proof proof of Theorem Proposition prove quantum rational reduced regular relation Remark respectively result satisfies sequence side singular solution space spectrum statement Subsection suffices Suppose Theorem theory transformation unique values vector vertex vertices zero