Kitabın içinden
75 sonuçtan 1-3 arası sonuçlar
Sayfa 253
Suppose a linear functional y is defined on some linear space D. XonX1 . Let y
be the restriction of p to Xo n X1 , and suppose that E ( Xon X1 ) * , V + 0. Let a , 3,
00 , and Bo be the dilation indices of the function k ( t ) = K ( t , ; X7 , X1 ) .
Suppose a linear functional y is defined on some linear space D. XonX1 . Let y
be the restriction of p to Xo n X1 , and suppose that E ( Xon X1 ) * , V + 0. Let a , 3,
00 , and Bo be the dilation indices of the function k ( t ) = K ( t , ; X7 , X1 ) .
Sayfa 260
As a result , applying Theorem 4 , we arrive at the following statement . Corollary
5. Suppose two numbers po , Pi ( 1 < po < pi < oo ) and two weight functions wo (
x ) , w1 ( x ) satisfy ( * ) if po > 1 and satisfy ( ** ) if po = 1. Let a , 3,00 , and Bo be ...
As a result , applying Theorem 4 , we arrive at the following statement . Corollary
5. Suppose two numbers po , Pi ( 1 < po < pi < oo ) and two weight functions wo (
x ) , w1 ( x ) satisfy ( * ) if po > 1 and satisfy ( ** ) if po = 1. Let a , 3,00 , and Bo be ...
Sayfa 417
Then there exist unique real - valued functions 0 , VE Ñ ( K ) and a vector Ž E R2
such that ( 2.4 ) id - G + ( 0 – i \ ) = - ( G + iF ) ãi – iH ( x2 + i ) . Moreover , ( 2.4 )
implies that 0 , V e Čo ( K ) and žı > 0 . Lemma 2.6 ( 29 ] ) . Suppose { F , G , H } E
...
Then there exist unique real - valued functions 0 , VE Ñ ( K ) and a vector Ž E R2
such that ( 2.4 ) id - G + ( 0 – i \ ) = - ( G + iF ) ãi – iH ( x2 + i ) . Moreover , ( 2.4 )
implies that 0 , V e Čo ( K ) and žı > 0 . Lemma 2.6 ( 29 ] ) . Suppose { F , G , H } E
...
Kullanıcılar ne diyor? - Eleştiri yazın
Her zamanki yerlerde hiçbir eleştiri bulamadık.
İçindekiler
Данилов Л И Об отсутствии собственных значений в спектре | 47 |
A Antipov and A I Generalov The Yoneda algebras of symmetric special | 377 |
A G Bytsko On higher spin U sl2invariant Rmatrices | 393 |
Telif Hakkı | |
7 diğer bölüm gösterilmiyor
Diğer baskılar - Tümünü görüntüle
Sık kullanılan terimler ve kelime öbekleri
algebraic analytic apply approximation arbitrary argument assume bounded called closed coefficients coincides complete condition connected Consequently consider constant construction contains continuous corresponding covering curves defined definition deformation denote depend determined dimension discrete edges element English equation equivalent estimate exists fact finite fixed formula function given Goursat problem graph identity implies inequality integral introduce invariant lattice Lemma limit linear locally Math Mathematical matrix means measure metric Moreover Note obtain operator parameters particular periodic Phys points polynomial positive potential problem Proof proof of Theorem Proposition prove quantum rational reduced regular relation Remark respectively result satisfies sequence side singular solution space spectrum statement Subsection suffices Suppose Theorem theory transformation unique values vector vertex vertices zero