Kitabın içinden
8 sonuçtan 1-3 arası sonuçlar
Sayfa 61
16 , Oxford Univ . Press , New York , 1999 , pp . 83–96 . MR1676684 ( 2000k :
37112 ) [ M ] D. Matthes , Discrete surfaces and coordinate systems :
Approrimation theorems and computation , Ph.D. thesis published online at the
Technical Univ ...
16 , Oxford Univ . Press , New York , 1999 , pp . 83–96 . MR1676684 ( 2000k :
37112 ) [ M ] D. Matthes , Discrete surfaces and coordinate systems :
Approrimation theorems and computation , Ph.D. thesis published online at the
Technical Univ ...
Sayfa 132
Mm + na Rm + n - ; --- Rı ) SA ( k , i - k ) ( M ) ( 3.17 ) = $ ( Mm + n = 1 ) sa ( k , i – k
) ( M ) . In the above computation , first we used ( 3.12 ) , which yields ( 3.16 ) .
Expression ( 3.16 ) turns out to be independent of a particular choice of the index
a ...
Mm + na Rm + n - ; --- Rı ) SA ( k , i - k ) ( M ) ( 3.17 ) = $ ( Mm + n = 1 ) sa ( k , i – k
) ( M ) . In the above computation , first we used ( 3.12 ) , which yields ( 3.16 ) .
Expression ( 3.16 ) turns out to be independent of a particular choice of the index
a ...
Sayfa 151
... multivariable generalizations of Slater's identities due to G. Andrews ( 2 ] .
These q - series identities may be interpreted as fermionic formulas for the
characters of the Virasoro algebra . The q - series identities that come from the
computation ...
... multivariable generalizations of Slater's identities due to G. Andrews ( 2 ] .
These q - series identities may be interpreted as fermionic formulas for the
characters of the Virasoro algebra . The q - series identities that come from the
computation ...
Kullanıcılar ne diyor? - Eleştiri yazın
Her zamanki yerlerde hiçbir eleştiri bulamadık.
İçindekiler
Данилов Л И Об отсутствии собственных значений в спектре | 47 |
A Antipov and A I Generalov The Yoneda algebras of symmetric special | 377 |
A G Bytsko On higher spin U sl2invariant Rmatrices | 393 |
Telif Hakkı | |
7 diğer bölüm gösterilmiyor
Diğer baskılar - Tümünü görüntüle
Sık kullanılan terimler ve kelime öbekleri
algebraic analytic apply approximation arbitrary argument assume bounded called closed coefficients coincides complete condition connected Consequently consider constant construction contains continuous corresponding covering curves defined definition deformation denote depend determined dimension discrete edges element English equation equivalent estimate exists fact finite fixed formula function given Goursat problem graph identity implies inequality integral introduce invariant lattice Lemma limit linear locally Math Mathematical matrix means measure metric Moreover Note obtain operator parameters particular periodic Phys points polynomial positive potential problem Proof proof of Theorem Proposition prove quantum rational reduced regular relation Remark respectively result satisfies sequence side singular solution space spectrum statement Subsection suffices Suppose Theorem theory transformation unique values vector vertex vertices zero