Multidimensional Inverse Problems for Differential EquationsM. M. Lavrentiev, Mihail Mihajlovič Lavrent'ev, Mikhail Mikhaĭlovich Lavrentʹev, Vladimir Gavrilovich Romanov, V. G. Romanov, V. G. Vasiliev Springer, 21 Ara 1970 - 59 sayfa |
Kitabın içinden
11 sonuçtan 1-3 arası sonuçlar
Sayfa 41
< х and Taking FOURIER transforms in equation ( 6 ) with respect to using the relation ( see [ 7 ] ) 1 2 2 3 . ( 7 ) + t cos ut dt = 2 2 / btu TT e - lcl Vostu we obtain 2 focuonife - Ineva 164212e ? ( V22 , 2 + w ?
< х and Taking FOURIER transforms in equation ( 6 ) with respect to using the relation ( see [ 7 ] ) 1 2 2 3 . ( 7 ) + t cos ut dt = 2 2 / btu TT e - lcl Vostu we obtain 2 focuonife - Ineva 164212e ? ( V22 , 2 + w ?
Sayfa 44
If we take FOURIER transforms with respect to x , we wind up with ( 17 ) 2.2 2 - nra + w F ( wen ) dn = 1 2.2 2 ' aa + w TT G ( w , 1 ) G ( w , 1 ) = 1 v2 en fe ( 2,1 ) e - Luter . Introduce the notation + ( 17a ) p2 = a ? , + w ?
If we take FOURIER transforms with respect to x , we wind up with ( 17 ) 2.2 2 - nra + w F ( wen ) dn = 1 2.2 2 ' aa + w TT G ( w , 1 ) G ( w , 1 ) = 1 v2 en fe ( 2,1 ) e - Luter . Introduce the notation + ( 17a ) p2 = a ? , + w ?
Sayfa 53
+ w V1 - 00 which implies that it is possible to take FOURIER transforms in ( 5 ) . In what follows we shall regard Wy positive and w2 negative . Let u wytwa , uE ( -0 , - ) ( 7 ) Va ? 2 2 + sa ? two y v = VE ( 2a , - ) .
+ w V1 - 00 which implies that it is possible to take FOURIER transforms in ( 5 ) . In what follows we shall regard Wy positive and w2 negative . Let u wytwa , uE ( -0 , - ) ( 7 ) Va ? 2 2 + sa ? two y v = VE ( 2a , - ) .
Kullanıcılar ne diyor? - Eleştiri yazın
Her zamanki yerlerde hiçbir eleştiri bulamadık.
İçindekiler
Linearized Inverse Dynamic Problem for the Telegraph | 22 |
Linearized Inverse Kinematic Problem for the Wave | 33 |
Inverse Heat Conduction Problems with Continuously | 39 |
Telif Hakkı | |
2 diğer bölüm gösterilmiyor
Diğer baskılar - Tümünü görüntüle
Sık kullanılan terimler ve kelime öbekleri
apply arbitrary arrive assume belong boundary conditions bounded chapter circle coefficients consider construct continuous function convergent coordinates corresponding curves defined Denote derive determine determining a function differential equation direction domain earth's ellipses ellipsoid of revolution exists expression family of curves fixed formula functions u(r geometry given GREEN'S function half-plane half-space heat Hence hold implies inequality integral equation Introduce inverse problem inversion formula known linearized method moments multidimensional namely Notes obtain operator origin parameters plane polar problem for equation problem of determining propagation properties proved question radius reduced relations represented respect right-hand side satisfies similar solution to equation space spheres Substituting sufficient take FOURIER transforms telegraph equation theorem unique uniqueness theorem unit vanishes variables waves