Multidimensional Inverse Problems for Differential Equations |
Kitabın içinden
11 sonuçtan 1-5 arası sonuçlar
Sayfa 3
For n = 1 , the following uniqueness theorem holds. Theorem 1: If equation (2) has a solution be long ing to C satisfying a Hölder condition in a neighborhood of the origin, then it is untaue. By solution here, we mean an even function ...
For n = 1 , the following uniqueness theorem holds. Theorem 1: If equation (2) has a solution be long ing to C satisfying a Hölder condition in a neighborhood of the origin, then it is untaue. By solution here, we mean an even function ...
Sayfa 5
O The functions for which conditions 10–39 hold will be designated as class U. We shall also make a slight change in the statement of the problem. Consider a circle of radius *o in the (x, s)-plane and all ellipses of eccentricity 0 < e ...
O The functions for which conditions 10–39 hold will be designated as class U. We shall also make a slight change in the statement of the problem. Consider a circle of radius *o in the (x, s)-plane and all ellipses of eccentricity 0 < e ...
Sayfa 7
Bu kitap için görüntüleme sınırınıza ulaştınız.
Bu kitap için görüntüleme sınırınıza ulaştınız.
Sayfa 10
Bu kitap için görüntüleme sınırınıza ulaştınız.
Bu kitap için görüntüleme sınırınıza ulaştınız.
Sayfa 11
Bu kitap için görüntüleme sınırınıza ulaştınız.
Bu kitap için görüntüleme sınırınıza ulaştınız.
Kullanıcılar ne diyor? - Eleştiri yazın
Her zamanki yerlerde hiçbir eleştiri bulamadık.
İçindekiler
l On the Problem of Determining a Function from Its Mean | 19 |
Linearized Inverse Kinematic Problem for the Wave | 33 |
CHAPTER H Inverse Heat Conduction Problems with Continuously | 39 |
Inverse Problems for SecondOrder Elliptic Equations 31 | 51 |
BIBLIOGRAPHY | 57 |
Diğer baskılar - Tümünü görüntüle
Sık kullanılan terimler ve kelime öbekleri
apply arbitrary arrive assume belongs boundary conditions bounded chapter circle coefficient consider const construct continuous function coordinates corresponding curves defined Denote derive determine determining a function differential equation direction domain earth's ellipses ellipsoid of revolution example exists expression family of curves fixed formula function u(r geometry given GREEN'S function half-plane heat Hence holds inequality integral equation Introduce inverse problem known linearized method moments namely obtain operator origin parameters polar problem for equation problem of determining properties proved question radius reduced relations represented respect right-hand side satisfies similar ſº solution to equation space spheres Substituting sufficient suppose surface take FOURIER transforms telegraph equation theorem unique uniqueness theorem unit vanishes variables waves x,xn